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Abstract

The shape of the tightest polygonal trefoil knot with N = 200640 vertices,
constructed by the authors using an appropriately modified finite element
method, is carefully analyzed. The large number of vertices provide a spatial
structure with very precise plots of its curvature and torsion. Based on the
increased accuracy of the data, the authors are able to formulate new conjectures
concerning the key features of the shape of the ideal trefoil knot.
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1. Introduction

Knots tied in a rope change their shape when tightened by making the rope shorter.
Conformations at which the length/diameter ratio reaches its global minimum are often referred
to as ideal. As proven by Cantarella et al, see theorem 7 in [1], such conformations, called
minimizers, exist for all (tame) knots and links. They are C""! with a bounded curvature.
Although many works have been devoted to the problem, the ideal conformations of knots,
even as simple as the trefoil knot, are only vaguely known today. It is the aim of the present
paper to describe the results of a numerical simulation that allowed us to generate a portrait of
the ideal trefoil knot at such a high resolution that new, essential details of its shape become
clearly visible. Some of the details look unusual at the first sight. One may suspect that they
are just products of the discrete nature of the simulated knot. To exclude this possibility
we performed, with similar precision, numerical simulations of the simple clasp—a system
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whose geometrical details have been discovered analytically. As we shall demonstrate, our
simulation method is able to reproduce the details. Thus, the similar subtle details that we
see in the structure of the tight trefoil knot are by all means a reality and not products of our
simulation method.

2. The continuous trefoil knot and problems with numerical simulations of its
tightening

The tightening of the closed knots requires a hypothetical process, in which the length of the
rope diminishes while the diameter of its perpendicular sections remains constant. Let us note
that for a closed knot its length is defined simply as the length of the rope in which the knot
is tied. The longitudinally shrinking rope comes into contact with itself. When the surface of
the rope is slippery, and when the rope is hard, the self-contact points move along its surface
without any hindrance. As a result, the knot changes its shape until a conformation is reached
at which the tightening process stops. Once again, the computer experiments indicate that
for larger closed knots one may expect many tight conformations, which one arrives at from
different initial conformations [2].

The physical properties of the perfect rope induce particular geometrical properties in
the knots that are tied in it. The assumption that the rope is hard, i.e. its circular sections are
not deformable and cannot overlap, implies that its axis has a continuous, but not necessarily
smooth, tangent vector. As aresult, its curvature versus the arclength function « (/), must remain
free from any Dirac-delta-like components, but does not need to be continuous. Obviously, as
explained above, it cannot be larger than 1/R.

The tightening process performed on the trefoil knot tied in the perfect rope has been
simulated in the past using different numerical procedures. The procedure, SP-FEM, used to
obtain results described in the present paper, was an appropriately modified finite element
method. Its detailed description will be published elsewhere. Unfortunately, such simulations
are always awkward, since the unavoidable discretization of the knot results in dealing not with
the knot itself, but with its discrete, polygonal representation. Let N be the number of vertices
in the polygonal representation K, of the simulated knot K. At the final analysis of the tightest
conformation obtained from the numerical simulation, the tight polygonal knot K, is replaced
by a C' smooth knot K, built from circular arcs inscribed into edges of the polygon. It seems
natural to expect that as N becomes larger, the knot inscribed into the most tight polygonal knot
better approximates the ideal conformation /Cjg. The toll paid for the discretization is high: at
its full resolution, the curvature of the knot inscribed into the numerically found polygonal
knot displays some features which are certainly not present in the ideal conformation and must
be seen as artifacts of the discretization. To remove them and see the true shape of the knot,
the resolution must be brought down. As a result, the image of the knot becomes more vague,
but this allows us to see the true shape of the ideal conformation. When N is very large (of
order 10°), lowering the resolution ten times gives an image which is still precise enough to
reveal subtle details of the knot shape.

3. Numerical simulation of the simple clasp

As forementioned, whilst performing numerical experiments we are constrained to work only
with finite resolution portraits of the ideal conformation. By analyzing the portraits we are
trying to guess what the shape of the ideal conformation is. A much better choice would be
finding the ideal conformation via a rigorous analytical calculation. Unfortunately, nobody
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Figure 1. The most tight simple clasp found by the SP-FEM method and the details of its
anatomy: E-straight ends, S-shoulders, G-Gehring, K-kink, D/-first deeps, D2-second
deeps. See text.

currently knows how to perform such a calculation even for a knot as simple as the trefoil knot.
(The ideal conformation is only thoroughly known for the closed unknot, but here calculation
is not needed: the ideal unknot is a circle of radius R.) As indicated by Starostin and Sullivan,
the analytical analysis path proved successful in the case of the so-called simple clasp.

The connection of two perpendicular ropes and pulling away their ends until the clasp
becomes tight is shown in figure 1. In spite of what our intuition suggests, the structure of the
simple clasp is by no means simple. The first simulations run by Sullivan with the Surface
Evolver provided a rough image of the tight clasp structure [3]. Inspired by this result and
assuming that the solution is symmetrical Starostin provided an analytical derivation of the
structure [4]. Starostin [4], assuming symmetry and using a variational approach, demonstrated
that to minimize its length, each of the ropes involved in the clasp must take a particular shape
consisting of a few curved pieces separated from each other by extremely short straight pieces.
The Starostin assumption that the solution is symmetrical limits its generality. Cantarella et al
solved the problem in a more general context, i.e. not assuming a priori that the solution is
symmetrical, both in the case of when radius of curvature is not limited [5], as well as in
the case when it is limited (from below) by the radius of the rope [6], demonstrating that the
multi-piece solution is critical. In what follows we shall refer to the structure as the Sullivan,
Starostin and Cantarella (SSC) solution. Figure 1(b) presents the details of the solution. Let
us describe a representative part of it.

The easy part of the solution is the shape of the end parts of the rope, i.e. those pieces
of it that are not in touch with the other rope. Being free, they must be straight. The pieces
are marked by E. The next piece is called shoulder (S). Here, one rope stays in touch with the
other rope along an arc of its central circular section. Thus, curvature of the shoulder piece
is equal 1/2. (We assume that the rope radius R = 1.) The shape of the next curved piece is
not so obvious. SSC call it Gehring (G), since this part of the clasp can be seen as a fragment
of the general solution of the so-called Gehring problem, in which there are no limits on the
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Figure 2. Curvature of the most tight simple clasp found by the SP-FEM simulation
method. The plot stays in a quantitative agreement with the plot presented by Starostin
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Figure 3. Curvature in the D/ region of the simple clasp. The length of the straight piece
equals 0.008, which stays in a quantitative agreement with Starostin’s solution [4].

curvature of the clasped ropes. Within the Gehring piece the rope stays in a double touch with
the other rope along two curved lines. Curvature changes here in a smooth manner. The last
curved piece of the simple clasp structure is located at the center. SSC call it kink (K). Within
the kink piece, the rope stays in touch with itself. This happens at a single point, where the
circular sections of the rope are at a tangent to each other. Curvature here reaches its highest
allowable value k = 1. Parts E, S, G and K are of comparable size and are easy to find in a
numerical simulation. The problem is that, as SSC revealed, both between S and G, as well
as between G and K, there are two additional, extremely short pieces D1 and D2, where the
rope becomes straight, i.e. where curvature drops to zero. The length of the pieces is so small
that in figures where SSC presented their solutions, they could not be visualized properly.
Pieces D1 and D2 of the SSC solution are extremely short, but it does not mean we can neglect
them. On the contrary, they should be seen as the fingerprints of the ideal conformation of
the simple clasp. If they are not seen in a numerical simulation of the clasp, then either the
simulated clasp is not tight, or the simulation is not precise enough. The SP-FEM simulation
was subject to this precision test. In the simulation each of the clasp ropes was represented by
a polygonal curve containing N = 64 001 vertices. The plot of the curvature of half of one of
the ropes is presented in figure 2. As one can see, all the pieces predicted by the SSC solution
are there, although the D2 piece is not properly developed. (Our figure 2 can be confronted
with figure 20 in [4].) The details of the curvature plot in the region of the D1 piece are
presented in figure 3. As seen in the figure, the width of the D1 piece equals about 0.008. This
is in agreement with the result of Starostin’s calculation, who predicted 0.0078 [4]. Starostin’s
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calculation predicts the width of the D2 piece to be equal 0.0004, while the edge length of
the polygonal curve representing the rope in our simulation was equal 0.000 13. This explains
why the D2 piece seen in figure 2 is fully developed, i.e. curvature drops to zero. With the
knowledge of how narrow the D1 and D2 pieces are, one immediately sees that finding them
in a numerical simulation is not a trivial task. The SP-FEM method managed to complete this
the task which gave us more confidence both in its in organization and precision.

Having reproduced the subtle details of the SSC solution, we have also understood
that some unexpected, extremely narrow details, which we have previously seen in the
simulated tight knots, may be not artifacts of the discretization, but essential parts of the
ideal conformations. The case of the tight overhand knot considered in [7] needs to be re-
analyzed from this point of view using a higher precision simulation.

4. The pursuit for the ideal trefoil knot: a retrospection

Looking into the history of the ideal trefoil knot problem we see how, step by step, using
various numerical knot tightening procedures such as simulated inflation (SI) [8], shrink-
on-no-overlaps (SONO) [9], deterministic ropelength minimizing algorithm (DRMA) [10],
simulated annealing [11] and constrained gradient descent (ridgerunner) [12], conformations
of shorter and shorter ropelength have slowly been found. (The ropelength of a knot is the ratio
of the length of the rope, in which the knot is tied, to the radius of the rope. In terms of the
notation used in the present paper, putting R = 1 turns the length L into ropelength.) Since, as
a rule, at larger N shorter conformations were found together with shorter knots, new details
of the anatomy for the ideal trefoil knot were discovered and new conjectures concerning its
shape were formulated. It is the aim of the present paper to describe a few new details revealed
in the simulations carried out with the use of the appropriately adapted finite element method
(SP-FEM). The details are essential as they change our view on the shape of the ideal trefoil
conformation. Before we present them, let us briefly summarize what is currently known about
the ropelength of the ideal trefoil knot.

The hypothetical process described above, in which the knot becomes tightened because
the rope in which it has been tied shrinks longitudinally while keeping its diameter intact
or keeping its length intact increases its diameter, was realized for the first time in practice
within the virtual reality computer simulations by Katritch ez al [8]. The minimum length of
the trefoil knot determined in the simulations was equal to 32.8, although the method with
which the number had been determined was not described in the paper. The first precisely
defined value of the ropelength of the tight trefoil was given by Rawdon [10] who developed
a clear method with which the value should be calculated. The value given by Rawdon was
equal to 32.80. An extensive study of the dependence of the ropelength L of trefoil knots
on the number of vertices N used for their discretization was described by Baranska et al
[13]. The aim of the study was to estimate the ropelength of the tight polygonal trefoil knots
found by the SONO algorithm in the N — oo limit. To achieve this goal, trefoil knots
with N = 1008, 1128, 1272, 1416, 1584, 1776, 2016, 2256 and 2544 vertices were tightened
with the use of the SONO algorithm. Analyzing the dependence L(N) the authors arrived
at the conclusion that as N — oo the ropelength should asymptotically approach the value
32.74295. (The results of the study presented in the next section will allow us to comment this
prediction). Let us emphasize that the above value is an approximate prediction. As far as the
exact numerically provable values of the ropelength upper bounds are concerned, the length of
the shortest trefoil knot was equal to 32.7434. It was found for a knot with N = 2544 vertices
[13]. A slightly shorter knot with N = 3552 vertices was found with the use of the SONO
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Table 1. Ropelength values obtained by various authors. SI—simulated inflation,
SONO—shrink-on-no-overlaps, DRMA—deterministic ropelength minimizing algo-
rithm, SA—simulated annealing, CGD—constrained gradient descent, SP-FEM—finite
element method. The knots analyzed in papers [13, 14] were found by the Przybyl
method. Ropelength values marked with a question mark were calculated with a method
that was not clearly specified.

Author Method N L

Katritch et al 1996 [8] SI 160 32.8
Pieranski et al 2001 [15] SONO 327 32.76
Rawdon 2003 [10] DRMA 160 32.90
Baranska et al 2004 [13] SONO 2544 32.7434
Carlen et al 2006 [11] SA 528 (arcs) 32.7444
Baranska et al 2008 [14] SONO 3552 32.7432
Ashton et al 2011 [12] CGD 2400 32.7437
Przybyl et al (present paper) SP-FEM 200 640 32.742 9345

algorithm a few years later [14]. Its ropelength was equal to 32.7432. The shortest trefoils
found by the RIDGERUNNER algorithm [12] and by the simulated annealing technique [11] are a
bit longer: 32.7437 and 32.7444, respectively. The knot that we are presenting below contains
N = 200640 vertices and is shorter than any of the previously found knots. Its ropelength
equals 32.7429345, i.e. even less than the previously predicted 32.74295 value [13]. The
results from the pursuit for the determination of the ideal trefoil knot ropelength are gathered
in table 1.

It may seem that the differences between the consecutive ropelength results presented
above are so small that one should not bother about them. This is not the case. Although small,
the differences are by no means negligible. On the contrary, they are essential; by finding a
conformation with a slightly lower value of the ropelength we are getting closer to the ideal
conformation and its portrait has a superior resolution. The essential details of the ideal trefoil
only anatomy become visible when the resolution is high enough.

The ropelength is just a single parameter in characterizing the tight knot found by
numerical simulation and it is of course desirable to know it: the lower the ropelength value,
the closer the found knot to the ideal one. However, as a single geometrical parameter the
ropelength does not tell us anything about the shape of the knot. To gain insight into the shape,
we must look at the plots of the curvature and torsion versus the arclength parameter: « (/) and
7(1). The plots should be very precise indeed, since they may contain the small, but essential,
details we have demonstrated considering the simple clasp structure above.

The curvature and torsion functions give an exact and complete description of their shape.
(To make the description unambiguous, we must allow the torsion function to contain the
Dirac-delta-like components.) By observing the plots of curvature and torsion one is able to
indicate regions of the knot in which the rope has some well defined shapes, e.g. arcs or helices.
The problem we face is that the torsion plots of tighter conformations, found by various knot
tightening programs, display a high level of noise, because the numerical calculation of torsion
needs the third derivative of the position vector field.

One of the first papers in which essential conjectures of the ideal trefoil knot shape were
formulated was published by Carlen ef al [11]. Knots analyzed by the Lausanne team were
approximated by bi-arcs. The tightest trefoil knot they managed to find after °...several months
of simulated annealing computation’ was built from 265 bi-arcs, thus, from N = 528 arcs of
varying length. The reported ropelength was L = 32.744. The authors study the knot in detail
with the aim of formulating some conjectures concerning its shape. They calculate the radii
of all the arcs obtaining a plot, see figure 3(a) [11], which reflects the curvature of the knot.
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Figure 4. Vertex numbering and basic symmetry elements of the K, knot. Existence of
the three- and two-fold symmetry axes allows one to limit analysis of the knot to 1/6
part of it.

The analysis of the plot, supported by analysis of the contact set, led the authors to state the
following.

Conjecture 1 (Carlen et al [11]). We remark that local radii are not active in the contact set for
w* = 8.1861 x 107, but are remarkably close to being active. For example local curvature
does form part of the contact set xs,-. Thus it is quite possible that on the true ideal shape
local curvature does achieve thickness at six distinct points.

Looking at the figure one can see that indeed one of the bi-arc curvature radii seems to
reach its lowest allowable value of the rope radius but at the five other minima the plot of the
radii values remains clearly above the limit.

As far as the torsion is concerned, the authors of [11] did not plot its values, instead,
they plotted unsigned values of the angles between planes of the oscillating circles of the
successive arcs. See figure 4 [11]. Analysis of this plot led the authors to formulate the
following conclusion.

Conjecture 2 (Carlen et al [11]). There are three regions with large angles that correspond
to the regions with a high variation of the radii, that is to the parts of the curve inside the
knot. Note that the angle is given in radians, that is, the maximal value of around 1.2 between
adjacent arcs corresponds to an angle of around 70 degrees. These extremely large values
could lead to the speculation that the Frenet frame of the underlying ideal curve may be
discontinuous, and that the associated ideal centerline curve may not be C* at nearby points.

The conjectures formulated by Carlen et al [11] can be confronted with the results of
analysis performed by Baranska et al [14]. The knot analyzed by the authors contained
N = 3550 vertices. It was found after several hours of simulation was performed with the
use of the SONO algorithm. The knot was highly equilateral: the relative deviation of the
length of its edges from the average length was less than 1077 Its ropelength, calculated by
the method developed by Rawdon [10], was L = 32.743 17, thus the knot was tighter than
the knot analyzed by Carlen et al As clearly seen in figure 15 in [14], where the curvature of
the N = 3552 knot is in the region of one of the double peaks, the first conjecture formulated
by Carlen et al is too weak. The curvature indeed achieves its upper limit value, but this
happens not at six distinct points, but on six finite intervals. The speculation formulated by
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Carlen et al concerning the torsion of the ideal knot is not found in the analysis performed by
Baranska et al, neither a confirmation nor contradiction [14]. The torsion data proved also to
be very noisy. This forced the authors to use a smoothing procedure. The smoothing allowed
them to plot torsion and indicate in the plot three double maxima, but excluded the possibility
of proving or disproving the speculations concerning the continuity or discontinuity of the
orientation of the Frenet frame. Another effort to find a tight conformation of the trefoil knot
was made by Ashton et al with the use of the constrained gradient descent method [12].
The tightest trefoil knot they managed to find contained N = 2400 vertices. Its ropelength
L was equal to 32.743 663 which is more than the ropelength of the N = 3552 trefoil found
by Przybyl [14]. The result that the curvature hits its upper limit on six intervals has been
confirmed. This is clearly seen in figure 13 of [12], where curvature is plotted. The question
of the torsion plot was not considered.

5. The ideal trefoil as seen in its N = 200 640 vertices portrait

The extremely tight and precise polygonal trefoil knot K, containing N = 200 640 which we
are going to present and analyze was found by one of us (SP) in a simulation performed with
the use of the appropriately modified finite element method (SP-FEM). Numerical calculations
simulating the tightening of the knot lasted (on a PC computer) a few months and were finished
when the knot reached the state at which no further tightening was possible. A simple numerical
analysis reveals that the K, knot is highly symmetrical. Its symmetry is D3. The knot has a
single three-fold symmetry axis and three, perpendicular to it, two-fold axes. Thus, the knot
consists of six congruent parts. In view of this, in analyzing the shape of the knot we shall
limit the analysis to a representative 1/6 part of it. See figure 4. To make plots of curvature and
torsion that will appear during this analysis compatible with the plots presented above for the
simple clasp we have chosen, as the starting point of the arclength axis /, the point at which
the central minimum within the double peaks of curvature is located. The vertex has an index
equal to 1. See figure 4.

5.1. Length

Let the vertices of the polygonal knot K, be denoted by v;. The average distance between
consecutive vertices, i.e. the average length of its edges e;
N
1
ew = ;e,- = 1.631924 56437 x 10~*, (1)

where
e; = lle;|l = llvipr — vl (2)

Deviations of the segment lengths away from the average value are not larger than 2 x 10715,
In view of this, the K, knot can be treated as equilateral.
The length of the polygonal knot K, is given with the accuracy stemming from the
fluctuations of the length of its segments described above
N
L,= Z e = 32.742934 460(1). (3)
i=1
Following Rawdon [10], the polygonal knot K, is replaced by the inscribed knot K..
Since, as indicated above, the K, knot can be considered as equilateral, the construction of the
Rawdon inscribed knot becomes particularly simple: consecutive arcs a; and a;; inscribed at
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vertices v; and v;y; of the knot meet practically without any gap in the middle of the edge
€, =041 — V;.

Let Al;, i =1,2,..., N be the lengths of the circular arcs, the union of which is K.. The
ropelength of the inscribed knot calculated with the Rawdon method gives:

N
Y AL
L. = Limi Al _ 32.742934547(1), “4)
where
2
Ro=.1- % — 0.999 999 996 67(1). 5)

The L. value given above can be seen as a new, numerically provable, upper bound for the
ropelength of the ideal trefoil. The previously known bound, equal to 32.743 386, was given
in [13].

Calculations presented in [13] show that the polygonal length underestimates the true
ropelength of torus knots while the inscribed arcs length slightly overestimates it. The
calculations indicate also that the true ropelength should be approximated well by an
appropriately weighted average:

Ly=3L,+ iL. (6)
Using this formula for the K, and K knots we find:
L, =32.742934477(1). @)

The number can be seen as a new, more precise prediction of the ropelength of the ideal trefoil;
the previous one, as predicted in [13] on the basis of knots tied with the SONO algorithm, was
equal to 32.74295.

5.2. Curvature and torsion

The ropelength of knot K, the shape of which we are going to analyze, is smaller than any
from the previously found values. Thus, it is reasonable to assume that its structural details
will be closer to those of the ideal trefoil knot Cyg.

As forementioned, at its full, original resolution, the curvature and torsion plots of discrete
knots are not reliable since they contain small scale details which must be seen as artifacts of
the discretization. Their origin has been explained in [14]. The amplitude of the artifact details
is reduced when, instead of the full set of vertices, we take into consideration m times smaller
set obtained by averaging coordinates of m consecutive vertices. The knot obtained in such a
manner will be denoted by K l(,’"). The higher m, the more efficient the reduction of artifacts.
On the other hand, m cannot be too high since this would smear out all subtle details of the
knot shape. As a rule we shall be using m =10. At this value of m the number of vertices
becomes reduced to N1 =20064 which is still about ten times more than the number of
vertices in any of knots analyzed in the past. The averaging positions of m = 10 consecutive
vertices makes the distance between them approximately ten times longer. Obviously, such a
procedure introduces the dispersion of the edge length. However, since the original length of
the edges in the K, knot is extremely small, their dispersion in the K\'*’ knot is negligible. (The
relative difference between the longest and shortest knot is of the order 10~".) Consequently,
the Rawdon construction of the inscribed knot can be performed without any problems. A
polygonal knot with the reduced number of vertices will be denoted K 1(,’”). The knot inscribed
into it will be denoted by K.

To grasp the shape of the whole knot one needs to analyze only one sixth of it, i.e. for
[ € [0,L/6). In view of the very small difference between the lengths of the K. and K™
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Figure 5. Curvature and torsion of the K'” knot within the [0, L/6) interval.

knots, to describe the plots of curvature and torsion we use the knot length parameter denoted
simply as L.

Figure 5 presents the curvature plot of the K!!” knot within the representative 1/6 part of
it. As clearly seen in the initial part of the plot the curvature here reaches its upper allowable
value k = 1. This happens at a well defined, finite interval. The middle and the end parts of
the curvature plot seem to be smooth. In what follows we shall demonstrate that this is not
true. The maximum curvature interval is separated from the rest of the plot by short pieces
with very steep slopes. The steepness of the slopes becomes more visible when we look at a
picture of the curvature plot enlarged on the interesting region (see figure 6(a)). The shape of
the curvature plot presented in the figure convinces us that we are dealing here with what in
the ideal trefoil will appear as true discontinuities. In what follows the discontinuities will be
referred to as primary. We feel allowed to formulate the following.

Conjecture 1 (Present authors). Curvature of the ideal trefoil knot is not continuous. It reaches
the maximum allowable value k = 1 on six finite intervals. The plateaus of maximum curvature
are separated at both sides by discontinuities.

The values of the arclength parameter at which the primary discontinuities of curvature
appear are [; = 0.158 £ 0.001 and [, = 0.319 £ 0.001, thus the arclength width of the x = 1
interval equals Al; » = I, —{; = 0.161£0.002, which is more than the 0.122 found by Ashton
et al from the analysis of their N = 2400 knot [12]. The heights of the curvature jumps at both
ends of each of the curvature peaks are: Ax; = 0.264 £ 0.005 and Ak, = 0.115 £ 0.005.
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Figure 6. Curvature (a), accumulated torsion (b) and torsion (c) of the K!!? knot in the
initial part of the [0, L/6) interval. The curvature plot is clearly discontinuous at /; and
l,. The torsion plot displays sharp and high peaks (their upper parts are not visible).
As we guessed, the peaks turn within the ideal trefoil knot into Dirac deltas. Note that
values of torsion at both sides of the peaks are different.

Values of Ax| and Ak, cannot be confronted with results of other works, since the conjecture
that curvature of the ideal trefoil knot is discontinuous was not formulated before.

Due to needing the third derivatives of the position vector field, the torsion of the K9
knot is more difficult to determine. Figure 5(b) presents the torsion of the K9 knot within the
representative 1/6 part of it. As seen in the figure, the level of noise is much higher than in the
curvature plots. Nevertheless, in the interesting region of the curvature peak, where curvature
displays discontinuities, one can easily see two very sharp peaks. A study of the behavior
of the torsion peaks at varying m reveals that as m decreases, the peaks become sharper and
their height increases. Our conclusion is that, what the peaks represent is not a conventional
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maxima of a smooth torsion function, but Dirac delta components of the function. Thus, the
following hypothesis concerning torsion of the ideal trefoil seems to be well justified:

Conjecture 2 (Present authors). The forsion of the ideal trefoil is not a conventional function:
in points, where the curvature displays primary discontinuities, the torsion displays Dirac
delta components.

The weights of the Dirac delta components of torsion can be estimated by the inspection of
the accumulated torsion « (/) plot (see figure 6(b)). As seen in the figure, accumulated torsion
is discontinuous at /; and ;. The heights of the discontinuities are Ac«; = 0.159 £ 0.005
and Aay = 0.062 £+ 0.005. The values stay in a quantitative (but not qualitative) conflict
with the observation made in [11], since it does not happen in the ideal trefoil knot ...that the
angle ...between adjacent arcs corresponds to an angle of around 70°. (70° amounts to about
1.2 radians.) The weights of the Dirac delta components of torsion, i.e. the angles between
the adjacent arcs, at the places at which as Carlen et al conjectured the Frenet frame, become
discontinuous, are an order of magnitude smaller than 1.2 radians. A further detailed inspection
of the torsion plot, see figure 6(c), reveals that values of torsion at both sides of the Dirac delta
peaks are different. Thus, our conclusion is that at /; and /, torsion is also discontinuous.

There is an additional, unexpected feature of the torsion function. As seen in figure 6(c),
inside the (I, [;) interval it displays a sharp, cusp shaped minimum located at the point marked
as [2+. As we guessed, the torsion function of the ideal trefoil knot is continuous but not smooth
at the point. What is the origin of this singularity? To answer this question we must take into
account contact between the points of the K, knot.

5.3. Contact set and contact functions

Following the notation used by Gerlach [16], let us denote by y(1), [ € [0, Lig), the vector
function describing the spatial positions of points along the searched for ideal trefoil knot Cig.
Here Ly is the length of the knot. Each point p (1) of the ideal trefoil knot Kj4 can be seen as
the center of a single, disc-shaped section D(l) of the perfect rope in which the knot has been
tightened. The section discs cannot overlap, but they may be in contact. There are two kinds
of contact:

(1) contact between discs from two arclength distant parts of the rope,
(2) contact between neighboring discs.

The first set of contact points will be denoted by CS;. The second set of contacts will be
denoted by CSy;. The pieces of the rope, within which contacts of the second type are present,
are called kinks [6]. The curvature here reaches its highest possible value k = 1. There are
two kinds of kinks. In the first kind, present within the simple clasp structure discussed in
section 3, section discs stay in contact at a single point. The axis of the rope remains planar
here and can be seen as a circular arc of unit radius. In the second kind, the contact points
between infinitesimally close discs are not gathered in the same place, but are distributed along
a curve in a continuous manner. The simplest object within which such a curve of contacts of
the second kind can be found is the perfect rope shaped into a curvature limited helix [17].
See figure 7.

Numerical simulations suggest that each point of the ideal trefoil knot stays in contact
of the first kind with exactly two other points of the knot. Simulations described in [12, 15,
16, 18, 19] indicate the contact set CSj of the ideal trefoil knot is shaped into a continuous,
self-avoiding, knotted curve. The contact set CSy; has not been considered so far. The location
of both contact sets within the knot structure is shown in figure 8.
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Figure 7. Curvature limited helix [17]. The perfect rope of radius R = 1 has been
formed into a helix. The radius of the helix ry = 0.2, while its pitch Py = 2.51327.
At such parameter values the curvature of the helix is equal to 1. Points of contacts of
type Il draw a helical line on the surface of the rope. The contact points coincide with
the centers of the oscillating circles. Some radii that join the centers of the oscillating
circles along with the points at which they are tangent to the helix are also shown.

Figure 8. Conjectured location of the contact sets CS; and CSy; within the ideal trefoil
knot as determined via the analysis of the K, knot. Contact set CSy is connected and
knotted. Contact set CSyy consists of six congruent pieces. The arrow indicates one of
them.

The points belonging to those parts of the knot, where k = 1, should be seen as having
not two, but three contacts—the third one being of the second kind. This is essential since,
when considering the equilibrium of forces within the ideal trefoil knot (one may imagine that
the perfect rope in which it has been tied is subject to tension), the presence of contacts of the
second type must be also taken into account. From the physical point of view, the SP-FEM
algorithm simulates a knotted, closed rope subject to a longitudinal tension. The tension,
acting along the rope, creates at its curved parts the transverse force that pushes vertices from
the different parts of the knot toward each other. The SP-FEM algorithm produces additional
vertex—vertex forces aimed to prevent the distance between the vertices becoming smaller than
2. On the other hand, the tension present within the simulated rope tries, in some places, to
bend it further than it is allowed. In such places, the SP-FEM algorithm produces an additional
momenta of forces that are preventing it. As a result, the inscribed knot K, is free from
overlaps and nowhere does its curvature exceed 1. Following notation used by Gerlach [16],
we introduce two functions that allow one to indicate those points of the knot that have the
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first type of contact. Gerlach denotes the functions as o (/) and t (). Using these functions
the pair of the knot points that get in contact, of the first type, with a chosen point y (/) of the
knot can be specified as y (o (/)) and y(z(!)). In accordance with a long tradition, 7 is used in
the present paper as a symbol of torsion, we shall in what follows denote the Gerlach contact
functions as o_ and o. Using the notation, the points at which the contacts of the first kind
take place are:

l _(
S URSL20)) )

y() +y(o ()
ci(l) = % (€))
Obviously, to determine and parametrize the complete curve of the contact points CS; we need
only one of the contact function, e.g.:

CS(l) = w I €0, Ly). (10)

Let us return to the analysis of the polygonal K, knot found by the SP-FEM simulation and
consider the problem of the contact functions. Approximate discrete images of the functions
have been presented in the references [12, 15, 16, 18]. As mentioned above, the SP-FEM
algorithm analyzes the vertex—vertex distances (the vertices belonging to different parts of the
simulated rope) and whenever they become smaller than 2, it introduces a pair of opposite forces
aiming to remove the violations. From the physical point of view, the two vertices between
which the forces are acting can be seen as connected with a strut, subject to a compression.
When in the course of the SP-FEM simulation the forces acting on a strut change sign, the strut
is removed. Thus, at the end of the simulation, the simulation code provides us with the set
B of the pairs of vertices between which the compressed, distance keeping struts are present.
Vertices connected by a strut can be seen as staying in contact of the first kind. The contact
point is located in the middle of the strut. The numerical analysis shows that the absolute
deviation of the strut lengths from their desired value 2 is not larger than 8 x 10713,

Let {i, j¥}.k=1,2,..., M,be the pairs of indices defining the struts in the final K, knot.
The ordered pairs (li?, l jf) and (/ i lif) define, within the [0, L,] x [0, L,], square points that
can be seen as pixels of a high but finite resolution, discrete image of the continuous contact
functions o_ (/) and o (/) (see figure 9). An appropriate processing of the data allows us to find
values of the strictly monotone o_ (/) and o (/) functions. By analyzing the functions we are
able to draw some new conclusions concerning their properties. It is essential to acknowledge
that in the view of the conjectured D3 symmetry of the ideal trefoil knot, to know the shape
of both the contact functions in the whole [0, L;q range, it is sufficient to know the shape of
one of them in the initial [0, Ljz/3) interval or the shapes of both functions in the [0, Lig/6)
interval.

To provide proof that the contact curve is knotted, Gerlach formulates a hypothesis (5.14
in [16]), that the contact functions are smooth. The inspection of the plots presented in [12,
15, 16, 18, 19] seems to confirm it. At the first sight, see figure 9, the results of the present
study also stay in agreement with the hypothesis. However, inspecting the derivatives of the
functions we clearly see this is not the case: see figure 10 and figure 11. The most distinct
discontinuities of the derivative of the o_ function are located at /;, and [, where the curvature
displays its primary discontinuities. It is clear that the function is also not smooth at other
points. The analysis of the positions and values of the discontinuities and the relations between
them requires a separate study.

Another of the hypotheses formulated both by Gerlach and Carlen [16, 19] is the existence
within the ideal trefoil of the so-called 9-cycles. A plot of the o function obtained with the
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Figure 9. Shapes of the contact functions o_ and o, as seen via plots of the end points
of the contact struts.
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Figure 10. Shape of the derivatives of the contact functions o_ and o in the initial part
of the [0, L./6) interval.

data stemming from the K, knot indicates that it is not tangent to the diagonal, but intersects
it at 18 points. See figure 12. The 18 points form two stable 9-cycles. The arclength positions
of the points of the first and second cycle (listed in the order in which they are connected in
a given cycle via consecutive actions of the contact function o_) are: C° =10.189, 15.674,
32.370, 11.103, 26.588, 10.541, 22.018, 4.759, 21.455] and C = [ 32.554, 11.288, 27.984,
10.725,22.202, 6.155, 21.640, 0.373, 17.069]. We denoted the two cycles by C? and C?r since,
although map [ — & (/) has 18 fixed points, only nine of them gathered in C° , are stable. The
other nine fixed points, gathered in C?, prove to be stable from the point of view of mapping
[ — 02 ).

The location of the 9-cycles within the spatial structure of the knot is shown in figure 13.
As Carlen indicates [19], assuming that symmetry of the ideal trefoil is D3, the existence of a
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Figure 11. Shape of the derivatives of the contact functions o_ and o in the end part

of the [0, L./6) interval.

10

Figure 12. The shape of the 9th functional power o of the contact function o_
determined from the SP-FEM struts data. To make the intersection points of the o
plot with the diagonal we only plotted 1/3 part of the function. Here there are 6
intersection points, thus, in the whole knot there are 18 of them.

single 9-cycle allows one to construct the whole knot from only two pieces of it. The results
of the present study lead to a modification of the statement. Since, as we have demonstrated,
we deal not just with one, but with two 9-cycles, the construction of the whole knot needs not

two but three pieces'.

6. Higher order singularities of curvature and torsion

Assuming that the ideal knot has the D3 symmetry and by properly choosing the place at
which the arclength [ variable has its origin, we come to the conclusion that what happens in

' The old data analyzed in PhD theses by Gerlach and Carlen suggested the existence of a single 9-cycle, but their

new data indicate that there are two such cycles.
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Figure 13. Conjectured position of two 9-cycles within the ideal trefoil knot.

the knot at a point y(I), where ! € [0, Lig/6), happens also at five other points y(Liq/3 — 1),
y(Lia/3+1),y(2Lig/3 — 1), y(2Lia/3 + 1), and y(Liqg — I). Obviously, the inverse is also true:
whatever happens at y(I), where [ € [L;q/6, L;), happens also at a y(l~), where [ € [0, Lig/6).
The formulae given above make it clear how to calculate the [ value:

I for 1€ [0/Lia/6) )

2Lid/6 —1 for le [Lid/6, 2Lid/6) (H)

1 —2Lq4/6 for [e[2Lq4/6,3Ly4/6) (III) an
4Lid/6 —1 for le [3Lid/6, 4le/6) (IV)

| — 4Lid/6 for [ e [4Lid/6, SLid/6) (V)

Lig—1 for 1€ [SLid/6, Liq) (VD).

~
Il

Suppose we start from point [, = 0.3185 (located within the [0, Liq/6) interval) at which
the primary discontinuity of curvature takes place. The /, point stays in contact with point
12, =0_ (21) = 16.7467. Since 12, € [3Lid/6, 4Lid/6), iQ, = 4Lid/6 - 12, = 5.0819. Thus,
the influence of the primary discontinuity of curvature located at /, on the shape of curvature
at the o_(2) should be visible in the representative [0, Ligq/6) interval at l~2,. Inspection of
the curvature plot presented in figure 5 is disappointing, since at this value of [ the curvature
plot seems to be smooth. However, an appropriate magnification reveals interesting details.
As seen in the figure 14, the curvature is also discontinuous at the point. This discontinuity
will be called secondary. Its height equals 0.00095 £ 0.000 08. Further inspection of the
figure indicates that the accumulated torsion, part (b) of the figure, is also discontipuous.
Thus, the torsion shown in part (c¢) should have a Dirac delta component. Indeed, at /,_ the
torsion displays at a very high peak. The height of the peak depends strongly on m and thus it
represents a Dirac delta component. The weight of the component (equal to the height of the
accumulated torsion discontinuity) amounts to 0.0215 % 0.0016.

Continuing the analysis we may ask what influence the /, discontinuity has on the shape
of the knot at the point indicated by the second, i.e. o, contact function. The place within the
[0, L/6) interval, where it should be seen is located at [, = 0.2079. As seen in figure 6(a)
the point falls into the (/;, /) interval, where the curvature is limited by its upper allowable
value k = 1. Thus, looking at the curvature plot, we do not see anything. Inspection of the
accumulated torsion and torsion plots, (b) and (c), reveals that the contact leaves a visible
trace: the accumulated torsion has a kind of an inflection point there. Torsion displays at
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Figure 14. Enlarged plots of curvature (a), accumulated torsion (b) and torsion(c), in
the end part of the [0, L/6) interval. The secondary discontinuity of curvature visible at
I, is induced by the primary discontinuity visible in figure 6(a) at /.

the point a sharp, cusp shaped minimum. Our conjecture is that at the fz+ point of the ideal
trefoil knot its torsion is continuous but not smooth. There it reaches its zero value.

Similar analysis allows one to indicate the origin of the other interesting landmarks visible
in the curvature and torsion plots. For instance, the secondary discontinuity of curvature
shown in the picture inserted in figure 6(a) is located at L. = 0.5029 point. Its height
amounts to 0.0016 £ 0.0008, thus it is very small. The secondary discontinuity shown in the
picture inserted in figure 14(a) is located at /;,_ = 4.463 61 and its height is hardly visible:
0.000 05 £ 0.000 05. Ternary singularities located at points I,__and ], 1++ are much weaker. It
seems that at /,__ and l~2++ there are no singularities, since l~2+ is located within the interval
of constant curvature and the same happens with L__. We managed to detect some of them,
but since their magnitudes are burdened with large errors, we do not list them.
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7. Conclusions

The results of the simulations presented above allowed us to formulate firmly supported
conjectures concerning the shape of the ideal conformation of the closed trefoil knot. Let us
gather them into a single list.

(1) Curvature « of the ideal trefoil is not continuous. The primary discontinuities appear at
the ends of the intervals within which x = 1.

(2) Torsion 7 of the ideal trefoil knot is not continuous. Localization of its singularities is
identical with localization of the discontinuities of curvature. At the points of the primary
discontinuities of curvature, the torsion function has singular Dirac delta components.

(3) Contact functions of the ideal trefoil knot are not smooth. The points of their discontinuities
are related to the discontinuities of curvature and torsion.

(4) The ideal trefoil knot hosts two 9-cycles.

(5) Contacts between various parts of the ideal trefoil knot propagate each of its primary
shape singularities along the knot, but the existence of the constant curvature intervals
and the 9-cycles makes the propagation process decay.

These new conjectures, listed above, essentially change our view on the shape of the
ideal trefoil knot, indicating that it is more complex than it has been assumed so far. Let us
emphasize that acceptance of the existence in the ideal knot of shape singularities was possible
only because we kept in mind results of the Starostin and Sullivan study of the simple clasp. In
a similar manner, the existence of the secondary shape singularities and their connections with
the primary singularities became clear only due to the idea of the contact functions introduced
by Carlen and Gerlach. The curvature, torsion and contact functions singularities are closely
related. A general study of the connections between them still needs some more work.
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